W∗-algebras and nonabelian harmonic analysis

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topics in Nonabelian Harmonic Analysis and DSP Applications

Underlying most digital signal processing (DSP) algorithms is the group Z/N of integers modulo N , which is taken as the data indexing set. Recently, An and Tolimieri [1] considered a different class of index set mappings, which arise when the underlying group is nonabelian, and successfully apply them to 2D image data. Advantages of indexing signals with nonabelian groups are not limited to im...

متن کامل

W ∗-algebras and integration

We present the mathematical setting of the theory of W ∗-algebras, including the Tomita– Takesaki modular theory, the Connes–Araki relative modular theory, the theory of W ∗dynamical systems (with derivations, liouvilleans, and crossed products), and noncommutative integration up to the Falcone–Takesaki theory of noncommutative Lp(N ) spaces. We pay special attention to abstract algebraic formu...

متن کامل

Linearization of W algebras and W superalgebras

In a recent paper, the authors have shown that the secondary reduction of W-algebras provides a natural framework for the linearization of W-algebras. In particular, it allows in a very simple way the calculation of the linear algebra W(G, H) ≥0 associated to a wide class of W(G,H) algebras, as well as the expression of the W generators of W(G,H) in terms of the generators of W(G, H) ≥0. In thi...

متن کامل

q-deformed W-algebras and elliptic algebras

The elliptic algebra Aq,p(ŝl(N)c) at the critical level c = −N has an extended center containing trace-like operators t(z). Families of Poisson structures, defining q-deformations of the WN algebra, are constructed. The operators t(z) also close an exchange algebra when (−p1/2)NM = q−c−N for M ∈ Z. It becomes Abelian when in addition p = qNh where h is a non-zero integer. The Poisson structures...

متن کامل

Cross Product Quantisation, Nonabelian Cohomology and Twisting of Hopf Algebras

This is an introduction to work on the generalisation to quantum groups of Mackey’s approach to quantisation on homogeneous spaces. We recall the bicrossproduct models of the author, which generalise the quantum double. We describe the general extension theory of Hopf algebras and the nonAbelian cohomology spaces H(H,A) which classify them. They form a new kind of topological quantum number in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1972

ISSN: 0022-1236

DOI: 10.1016/0022-1236(72)90077-8